

S.I.A.D. S.p.A.

Stabilimento di Carlino (UD)

Allegato 15

SINTESI NON TECNICA

INDICE

Premessa	3
Inquadramento urbanistico e territoriale dell'impianto ippc	3
1.1. Inquadramento urbanistico generale	3
1.2. Dati catastali del complesso	
1.3. Zonizzazione e classificazione acustica	
1.4. Descrizione di massima dello stato di ubicazione dell'impianto.	4
2. Cicli produttivi del complesso IPPC	
2.1. Capacità produttiva dell'impianto	4
2.2. Descrizione del ciclo produttivo	
2.2.1. Impianto Frazionamento Aria AFP-3000 (attivtà non IPPC)	
2.2.2. Impianto di produzione idrogeno SR-600 (attivtà IPPC)	
2.3. Bilancio di materia	
2.3.1. Impianto Frazionamento Aria AFP-30002.3.1. Impianto di Steam reforming SR – 600	
2.4. Bilancio di Energia	
2.4.1. Impianto Frazionamento Aria AFP-3000	
2.4.2. Impianto di Steam Reforming SR-600	
2.5. Rifiuti prodotti	14
2.6. Logistica di approvvigionamento	
3. Energia	16
3.1 Produzione di energia	
3.2. Consumo di energia	
4. Emissioni	17
4.1 Emissioni in atmosfera	177
4.2 Scarichi idrici	21
4.3 Emissioni sonore	23
4.4 Rifiuti	25
5. Sistemi di abbattimento/contenimento	27
Emissioni in atmosfera	27
Emissioni in acqua	27
Emissioni sonore	27
Rifiuti:	27
6. Bonifiche ambientali	
7. Stabilimenti a rischio di incidente rilevante	28
8. Valutazione integrata dell'inquinamento	28

PREMESSA

La Società Italiana Acetilene e Derivati S.p.A. (nel seguito SIAD SpA), con sede a Bergamo in via San Bernardino 92, a seguito dell'installazione di un impianto per la produzione di idrogeno presso lo Stabilimento di Carlino (UD) rientra nell'ambito di applicazione IPPC del D.lgs. 152/06.

Lo stabilimento di produzione di gas tecnici insiste sull'area in argomento da circa vent'anni. L'attività di produzione attuale si concentra sulla distillazione frazionata dell'aria per la produzione di gas tecnici a diversi gradi di purezza, quali azoto, ossigeno, argon, che vengono successivamente venduti alle utenze per mezzo di contenitori mobili ovvero gasdotti.

A fianco a tale realtà produttiva, la Società Italiana Acetilene e Derivati (nel seguito SIAD), ha installato nel 2013 un impianto per la produzione di idrogeno che utilizza un processo di reforming catalitico del gas naturale, andando a produrre idrogeno stesso e gas di coda che alimenta in modo continuativo l'impianto termico del reforming stesso. L'impianto non è ancora stato messo in esercizio.

Gli impianti di frazionamento aria e di produzione idrogeno sono indipendenti.

1. INQUADRAMENTO URBANISTICO E TERRITORIALE DELL'IMPIANTO IPPC

0.1. INQUADRAMENTO URBANISTICO GENERALE

Lo stabilimento di Carlino (UD) si trova in zona territoriale omogenea D1 "zona per attività produttive: attività produttive industriali ed artigianali di interesse regionale" (N.T.A. Art. 18) del vigente PRGC, le cui destinazioni d'uso e parametri urbanistici ed edilizi sono regolamentati all'interno del Piano Particolareggiato della zona industriale Aussa-Corno.

L'area di ubicazione dell'insediamento si colloca tra il paese di Carlino ad una distanza di 3 km e il paese di San Giorgio di Nogaro distante circa 4 km, in corrispondenza del punto geografico:

Latitudine: 45° 80' N Longitudine: 13° 18' E Altitudine: 5 metri s.l.m.

Sul sito insiste una linea elettrica di alta tensione e una cabina di trasformazione la quale determina una servitù di elettrodotto per una fascia inedificabile di m. 20

0.2. DATI CATASTALI DEL COMPLESSO

La superficie totale occupata dall'insediamento è pari a 25150 m² parte dei quali adibiti a verde. L'area edificata e/o utilizzata per le attività lavorative dello Stabilimento occupa una superficie pari a circa 6000 m² dei quali 4600 m² destinati alla produzione, 1000 m² ad aree di deposito o magazzino e 400 m² occupati dalla palazzina uffici/officina.

Il complesso ricade in Catasto nel foglio di mappa n° 18 del Comune di Carlino, ed è distinto con le particelle n° 38, 44, 45, 46, 47.

0.3. ZONIZZAZIONE E CLASSIFICAZIONE ACUSTICA

Attualmente il Comune di Carlino non ha attuato la zonizzazione acustica prevista ai sensi dell'art.6 della legge n. 447/95. In riferimento all'art.8 del D.P.C.M. 14 novembre 1997 (norme transitorie), in attesa che il Comune, secondo le indicazioni della Regione, proceda alla zonizzazione con il relativo eventuale piano di risanamento acustico, si continuano ad applicare i limiti di cui al D.P.C.M. 1 marzo 1991. Tale decreto prevede una suddivisione del territorio comunale in zone come sotto riepilogate:

Zonizzazione	Limite diurno (h06:00÷22:00) Leq (A) in dB	Limite notturno (h22:00÷06:00) Leq (A) in dB
Tutto il territorio nazionale	70	60
Zona A (D.M. n. 1444/68)	65	55
Zona B (D.M. n. 1444/68)	60	50
Zone esclusivamente industriali	70	70

Rispetto alla classificazione urbanistica adottata dal P.R.G.C. del comune di Carlino lo stabilimento ricade nella Zona omogenea D1 – "Zone per attività produttive: attività produttive, industriali ed artigianali di interesse regionale ove sono situati gli insediamenti produttivi, ovvero alla "Zona esclusivamente industriale" di cui art. 2 del Decreto Ministeriale 2 aprile 1968 n. 1444.

Per quanto concerne invece i valori limite differenziali di immissione, previsti dal D.P.C.M. 14/11/1997, pari a 5 dB per il periodo diurno e 3 dB per il periodo notturno risulta quanto segue:

- Essendo la zona in esame all'interno di un comprensorio artigianale-industriale è possibile che venga ritenuta appartenere, in relazione alla futura zonizzazione acustica comunale, alla classe VI "Aree esclusivamente industriali" di cui al D.P.C.M. 14/11/1997. Comunque attualmente si ritiene che appartenga ad una "Zona esclusivamente industriale" di cui al D.P.C.M. 01/03/2008. In tali zone i limiti differenziali non si applicano.

0.4. DESCRIZIONE DI MASSIMA DELLO STATO DI UBICAZIONE DELL'IMPIANTO

Lo stabilimento SIAD di Carlino è insediato nel comune di Carlino (UD) in area caratterizzata prevalentemente da attività lavorative di tipo industriale e da aree agricole e a verde.

Lo Stabilimento SIAD di Carlino confina:

- a NORD-EST con il canale Pradicit. Oltre il canale è presente una strada (Via Torricelli) e dall'altro lato della strada, sempre proseguendo verso nord-est, l'azienda "Aussachem SpA" con un impianto per la lavorazione di glicerina (alla quale SIAD fornisce alcuni dei gas tecnici necessari);
- a SUD-EST con il canale acque esterne Planals. Il canale è costeggiato dalla via Toppo Wassermann lungo la quale, sull'altro lato rispetto al canale è insediata la società "Trametal SpA", azienda che effettua la produzione di lamiere in acciaio;
- a SUD-OVEST con la via Toppo Wassermann, oltre la quale si trovano terreni agricoli;
- a NORD-OVEST con l'azienda "Laguna srl", operante nel settore del commercio e trasporto ittico.

I centri abitati più vicini allo Stabilimento sono:

- Centro di Carlino a circa 3 Km;
- Centro di San Giorgio di Nogaro a circa 4 Km;
- Centro di Villanova (frazione di San Giorgio di Nogaro) a circa 3 Km;

Le strade e linee ferroviarie più vicine sono:

- Via E. Fermi, a circa 500 m;
- SS n° 14 a circa 4 Km:
- Autostrada A4 a circa 8 km:
- Linea ferroviaria Trieste-Venezia a circa 4 km

Per il riscaldamento dei locali ci si avvale di un serbatoio di GPL di capacità 1000lt.

E' presente una sottostazione per la distribuzione di Energia Elettrica A.T. da 132 kV con un trasformatore da 132 kV a 6 kV e un trasformatore che da 6 kV porta la tensione a 380 V dei quali, attraverso un power center, una parte alimenta direttamente determinate apparecchiature mentre un'altra parte viene ridotta a B.T. a 220 V. Infine è presente una linea di emergenza a M.T. da 380 V.

Secondo quanto stabilito dall'Allegato 1 all'Ordinanza n. 3519 del 28.04.2006 pubblicata sulla G.U. n. 108 del 11.05.2006 – Decreto del Ministro delle infrastrutture del 14.01.2008 pubblicato sul supplemento ordinario n. 30 della G.U. n. 29 del 04.02.2008, la classificazione sismica del Comune in cui si trova l'insediamento risulta essere la **Zona 3** area a BASSA sismicità.

Lo Stabilimento SIAD SpA di Carlino non risulta attualmente incluso nella perimetrazione del "Sito di Interesse Nazionale della laguna di Grado e Marano" di cui al D.M. 83/03.

2. CICLI PRODUTTIVI DEL COMPLESSO IPPC

2.1. CapaciTÀ PRODUTTIVA DELL'IMPIANTO

L'attività svolta nello Stabilimento di Carlino consiste principalmente nella produzione, nello stoccaggio e nella distribuzione (anche via gasdotto) di gas tecnici quali ossigeno (liquido e gas), azoto (liquido e gas), argon (liquido), idrogeno (gas), nella parte di preparazione della documentazione

accompagnatoria alla distribuzione, nell'attività di Laboratorio analisi e nella manutenzione e servizi generali di stabilimento.

La seguente tabella riporta i dati relativi alle capacità produttive dell'impianto:

		CAPACITA	' PRODUTTIV	A IMPIANTO
Categoria attività industriale IPPC	Prodotto	Capacità di progetto	Capacità di progetto (calcolata per un funzionamento di 8000h)	Capacità effettiva di esercizio (rif. anno 2013)
(Art. 6 comma 12)		Sm ³ /h (*)	Sm³/anno (*)	Sm³/anno (*)
non IPPC	OSSIGENO LIQUIDO	950	7.600.000	12.767.502
non IPPC	OSSIGENO GAS	2.000	16.000.000	4.179.415
non IPPC	AZOTO LIQUIDO	2.450	19.600.000	13.146.034
non IPPC	AZOTO GAS ALTA PRESSIONE			3.858.130
non IPPC	AZOTO GAS BASSA PRESSIONE	2.750	22.000.000	14.717.482
non IPPC	AZOTO GAS COMPRESSO DA RICICLO			497.380
non IPPC	ARGON LIQUIDO	100	800.000	761.528
4.2.a	IDROGENO GAS	585	4.680.000	-

^{(*} Sm³/h sono riferiti alle condizioni di 15°C di temperatura e di 735 mmHg di pressione)

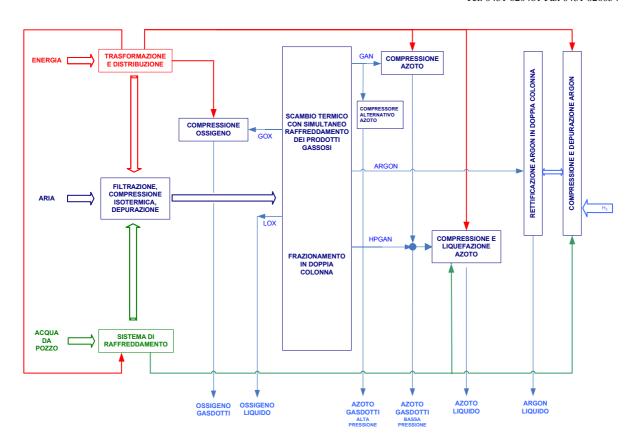
Relativamente all'operatività il reparto di *frazionamento aria* opera su ciclo continuo con impianto funzionante 24 ore su 24, come è previsto anche per il *reparto idrogeno*. Le rimanenti attività dello stabilimento si effettuano secondo orario di lavoro a giornata (8-12; 13-17).

Nell'arco dell'anno è prevista una fermata generale dell' impianto della durata di circa 15 giorni durante il periodo estivo.

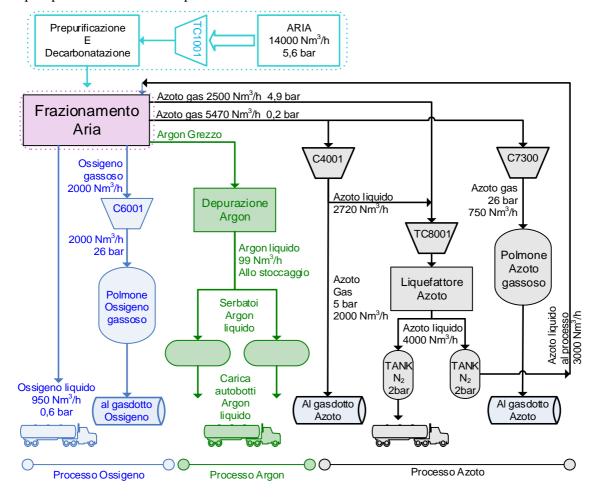
2.2. Descrizione del CICLO PRODUTTIVO

2.2.1. IMPIANTO FRAZIONAMENTO ARIA AFP-3000 (ATTIVITÀ NON IPPC)

Il processo consiste nella separazione dell'aria nei componenti da cui essa è costituita:


- Azoto (78 %)
- Ossigeno (21 %)
- Argon (0,9 %)
- Altri gas (0,1 %)

L'impianto è costituito da due colonne sovrapposte, operanti a pressioni differenti, al cui interno si hanno flussi di gas (ascendente) e di liquido (discendente), in equilibrio tra fasi liquida e gassosa. Salendo verso l'alto della colonna si ha una concentrazione crescente in azoto; verso il basso si ha una concentrazione crescente in ossigeno. L'argon è ottenuto in una terza colonna di frazionamento, nella quale il processo di distillazione è ripetuto su una miscela ossigeno-argon prelevata in un punto intermedio della colonna superiore.


Come evidenziato nello schema di principio riportato di seguito, l'aria (materia prima), attraverso l'ausilio di risorse quali energia e acqua (utilities) alimentanti le apparecchiature, subisce un processo di distillazione frazionata dal quale si ricavano:

- Ossigeno (liquido e gas)
- Azoto (liquido e gas)
- Argon (liquido)

Come illustrato nello schema a blocchi, l'impianto è stato suddiviso in sezioni, ogni sezione svolge un compito preciso all'interno del processo.

Le sezioni individuate sono:

- Compressione dell'aria
- Prepurificazione e decarbonatazione
- Frazionamento aria e produzione Ossigeno liquido
- Produzione Ossigeno gas e compressione in gasdotto
- Produzione Argon liquido
- Produzione del freddo e produzione Azoto liquido
- Produzione Azoto gas e compressione in gasdotto

I prodotti liquidi vengono immagazzinati in serbatoi criogenici all'interno dello stabilimento, mentre quelli gassosi vengono distribuiti alle utenze della zona industriale Aussa-Corno a vari livelli di pressione.

L'impianto di distillazione dell'aria AFP-3000 utilizza l'aria aspirata dall'esterno dello stabilimento ad una quota pari a circa 3 m. L'aria viene filtrata per trattenere la polvere atmosferica e poi compressa a circa 6,5 bar mediante un compressore aria.

L'aria atmosferica, dopo opportuna filtrazione viene compressa ad una pressione di 5,3 bar tramite un turbocompressore centrifugo dotato di scambiatore finale per rimuovere il calore di compressione. L'aria è poi raffreddata a circa 9°C in uno scambiatore aria-freon. Un circuito frigorifero provvede a garantire la quantità di freddo necessaria a raffreddare l'aria, allo scopo di condensare ed eliminare l'acqua presente sotto forma di vapore nell'aria.

L'aria fredda a questo punto subisce un processo di purificazione (anidride carbonica, acqua rimanente, idrocarburi pesanti e qualche idrocarburo leggero) mediante passaggio attraverso una batteria di essiccamento e decarbonatazione. Dopo essere passata attraverso un filtro polveri, l'aria in uscita dai prepurificatori, priva di H_2O e di CO_2 , si divide in due parti per subire il processo di raffreddamento attraverso il passaggio all'interno di due scambiatori. Una corrente principale (circa 2/3) passa attraverso lo scambiatore primario, mentre l'aria rimanente viene convogliata nello scambiatore secondario. I due stream, passando attraverso gli scambiatori, acquistano frigorie dai gas freddi (scambio termico in controcorrente) che escono dalla colonna (azoto e ossigeno) raffreddandosi fino a circa -170 °C.

Tutta l'aria uscente dal lato freddo degli scambiatori entra in colonna inferiore ad alta pressione (5 bar g) e risale attraverso i fori dei piatti, attraversando il liquido che scorre sui piatti. Poiché la temperatura di ebollizione dell'azoto è inferiore a quella dell'ossigeno, l'azoto vaporizza più facilmente mentre l'ossigeno condensa più facilmente nel liquido che scorre da piatto a piatto. Il vapore che raggiunge la testa della colonna è essenzialmente azoto puro mentre il liquido raccolto alla base della colonna inferiore (liquido ricco o *Kettle*) contiene circa il 36% di ossigeno, il 63% di azoto e il resto è argon.

Condensatore principale.

Il cold box dell'impianto di frazionamento usa un condensatore principale di tipo condensatore-ribollitore nel quale l'ossigeno liquido dal fondo della colonna superiore è fatto evaporare dalla condensazione dell'azoto proveniente dalla colonna inferiore. Poiché la tensione di vapore dell'azoto è più bassa di quella dell'ossigeno, non è possibile condensare l'azoto facendo evaporare l'ossigeno nel condensatore principale se i due fluidi sono alla stessa pressione. L'azoto deve essere a temperatura superiore (più caldo) dell'ossigeno per farlo evaporare. Per ottenere questo risultato si aumenta la pressione dell'azoto. Alla pressione della colonna inferiore (alta pressione), l'azoto condensa ad una temperatura che è più alta di quella a cui evapora l'ossigeno ad una pressione vicina a quella atmosferica. Il funzionamento del condensatore principale è controllato dalla pressione nella colonna superiore e dalla superficie attiva di scambio. Il livello di liquido del condensatore principale deve essere mantenuto al valore di progetto.

Colonna superiore

Il funzionamento della colonna superiore è essenzialmente lo stesso di quella inferiore. Il liquido che fluisce verso il basso della colonna attraversando ogni piatto viene in contatto con il vapore che risale attraverso i piatti. Il liquido si arricchisce di ossigeno ed argon mentre fluisce verso il basso della colonna, mentre il vapore che risale si arricchisce di azoto concentrandosi in testa alla colonna, l'ossigeno sul fondo e l'argon a circa un terzo dal fondo della colonna.

PROCESSO OSSIGENO

Quando il liquido raggiunge il fondo della colonna superiore contiene circa il 99,8% di ossigeno. L'ossigeno liquido prodotto è inviato prima al sottoraffreddatore ossigeno e successivamente allo stoccaggio ossigeno da un milione di litri.

Compressione e Distribuzione Ossigeno

Il flusso di Ossigeno gas in uscita dalla colonna di frazionamento viene inviato compressore per ossigeno dove viene portato alla pressione di 27 bar ed inviato a vari clienti via gasdotto.

PROCESSO AZOTO

Quando il vapore raggiunge la testa della colonna è essenzialmente azoto puro. Una parte di azoto gassoso è riscaldato nello scambiatore principale e mandato al compressore di riciclo. Tutto il restante azoto gassoso in testa alla colonna entra nel condensatore principale dove condensa nel lato ad alta pressione (colonna inferiore) facendo evaporare l'ossigeno liquido nel lato a bassa pressione (colonna superiore). Circa 2/3 dell'azoto liquido prodotto nel condensatore principale ritorna in testa alla colonna inferiore come riflusso. La restante parte dell'azoto liquido viene prelevato, sottoraffreddato nel surriscaldatore azoto e poi inviato in testa alla colonna superiore come riflusso.

Liquefattore azoto

Una parte dell'azoto a bassa pressione uscente dal dagli scambiatori proveniente dalla colonna superiore è mandato al compressore di alimentazione che lo comprime a circa 5 bar a. Prima della compressione la linea ha uno stacco per rifornire il compressore azoto. Dopo compressione, la linea si dirama: una parte va a servire utenze esterne via gasdotto, l'altra parte si unisce a un flusso di azoto ad alta pressione uscente dallo scambiatore principale proveniente dalla colonna inferiore e la frazione di gas di ricircolo e viene compresso dal compressore di riciclo fino ad una pressione di circa 30,5 bar a. L'azoto proveniente dal compressore di riciclo viene suddiviso circa in due parti uguali e inviato all'aspirazione dei booster freddo e caldo che lavorano in parallelo e sono accoppiati alle rispettive turbine.

L'azoto ad alta pressione uscente dai booster viene diviso in due correnti: una è inviata ad espandere nella turbina calda, una è inviata a raffreddarsi nello scambiatore liquefattore. La maggior parte dell'azoto ad alta pressione inviato allo scambiatore liquefattore viene prelevato prima della fine dello stesso ed espanso nella turbina fredda.

Tutto il ciclo di liquefazione viene regolato da una valvola di laminazione attraverso la quale avviene la vera e propria liquefazione dell'azoto (in entrata il flusso è gassoso, in uscita il flusso diviene liquido - LIN).

In uscita dalla valvola di laminazione il LIN viene mandato ad un separatore di azoto e successivamente portato al sottoraffreddatore azoto per poi essere diviso in 5 parti: la prima viene convogliata allo stoccaggio nei serbatoi appositi, la seconda viene inviata alla testa della colonna di distillazione superiore come riflusso, la terza parte viene trasferita al sottoraffreddatore ossigeno, dove vaporizza per raffreddare il LOX, la quarta parte viene mandata al condensatore dell'argon puro, dove vaporizza condensando l'argon miscelato con azoto, l'ultima parte viene utilizzata per evitare l'evaporazione di argon nell'argon batch tank. Terza, quarta e quinta parte evaporate, vengono riprese ed immesse nell'azoto gassoso impuro per rigenerazione batteria di essiccamento.

Compressione e Distribuzione Azoto

L'azoto di bassa pressione prodotto dall'impianto viene suddiviso in tre parti: la prima viene aspirata dal compressore azoto, compresso fino a 27 barg e distribuito ai clienti Artenius ed Europolimeri; la seconda parte viene aspirata dal compressore centrifugo e compresso fino alla pressione di circa 6 barg, per poi essere distribuito al cliente Sangalli vetro; una terza parte viene mandata in aspirazione al compressore e segue il ciclo di liquefazione (produzione di azoto liquido per i serbatoi di stoccaggio).

PROCESSO ARGON

Per la produzione dell'argon puro sono necessarie due ulteriori colonne di frazionamento: la colonna argon grezzo e la colonna argon puro.

La colonna argon grezzo riduce la concentrazione di ossigeno del flusso di alimentazione proveniente dalla colonna superiore. La colonna argon puro ha lo scopo di ridurre il contenuto di azoto nell'argon grezzo fino alla purezza di argon desiderata.

Dalla colonna superiore viene prelevato un flusso gassoso (composizione: 12% di Ar, 87,9% di O_2 , 0,01% di N_2) che alimenta il fondo della colonna argon grezzo dove va a contatto con il liquido di fondo, avente una composizione di 91,5% di O_2 , 0,45% di Ar e 0,05% di N_2 , con il quale si trova in equilibrio di fase. Il liquido di fondo di questa colonna (O_2 liberato dell'Ar) ritorna nella colonna di distillazione superiore.

Il vapore entrante sale attraverso i piatti della colonna argon grezzo arricchendosi in argon.

La parte principale del vapore di testa (97% Ar, 1,5% O₂, 1,5% N₂) viene parzialmente condensata e si dirama: la parte condensata ritorna come riflusso nella colonna mentre il ramo gassoso, chiamato argon grezzo (*Crude Argon*), passa attraverso uno scambiatore argon-argon e viene mandato, dopo aggiunta di idrogeno in eccesso, al reattore catalitico attraverso il compressore argon.

Circa il 5% del vapore di testa della colonna argon grezzo che non è stata condensata (gas ricco), viene prelevata e mandata in colonna di distillazione superiore.

L'argon grezzo gassoso non condensato proveniente dalla testa della colonna argon grezzo esce dal condensatore a circa -185° C e 0,14 barg. Questa corrente attraversa uno scambiatore argon-argon e si riscalda da -185° C a + 10° C, cedendo frigorie alla corrente di argon puro proveniente dalla batteria di essiccamento argon. Dopo che la corrente si è combinata con una quantità di idrogeno gassoso, giunge in aspirazione al compressore argon che comprime la corrente fino a 5 barg. La corrente viene quindi inviata nel reattore catalitico dove l'idrogeno reagisce con l'ossigeno presente e genera una reazione esotermica con formazione di H_2O . La condensa d'acqua formatasi nella reazione e nel successivo raffreddamento viene rimossa in un separatore di condensa e l'ulteriore vapor d'acqua ancora presente nella miscela viene eliminato in un'unità di essiccamento a setacci molecolari ed allumina.

La corrente uscente dalla batteria passa attraverso lo scambiatore argon-argon raffreddandosi e andando ad alimentare la colonna di distillazione finale che ha lo scopo di ridurre il contenuto di azoto nell'argon grezzo fino alla purezza di argon desiderata.

Nel lato condensatore del ribollitore l'H₂ residuo viene separato dal resto della miscela (rimanendo in fase vapore), prelevato e mandato in aspirazione al compressore argon.

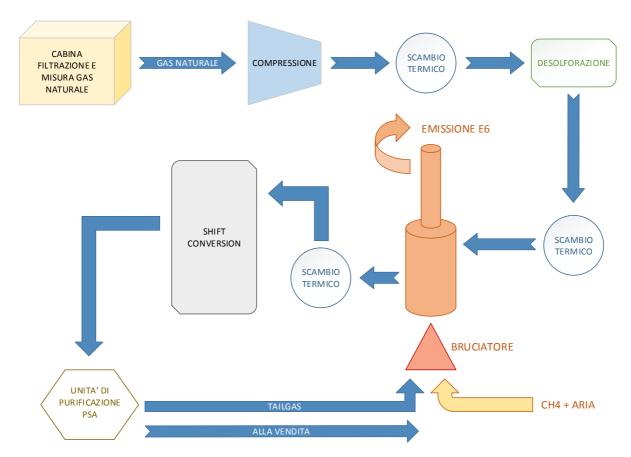
Nella parte inferiore della colonna argon puro il liquido condensato è argon liquido puro che viene inviato prima al contenitore argon liquido, dove viene sottoraffreddato dal passaggio di azoto liquido in una serpentina e poi, periodicamente, inviato ai contenitori di stoccaggio dell'argon liquido.

2.2.2. IMPIANTO DI PRODUZIONE IDROGENO SR-600

L'impianto è progettato per produrre fino a 585 Sm³/h di idrogeno gassoso utilizzando gas naturale come fluido di processo che, dopo lo stadio di compressione, viene inviato all'impianto di *Steam Reforming*; quest'ultimo, attraverso un processo di scissione catalitica del gas naturale con vapore seguito dalla purificazione del gas di sintesi ottenuto, consente di produrre idrogeno gassoso altamente puro (99,9995%), con un contenuto massimo di impurità come da tabella seguente:

	COMPOSIZIONE GAS PRODOTTO						
H_2	CH ₄	CO_2	CO	H ₂ O	O2	N_2	Altri
% Vol.	Vppm max.	Vppm max.	Vppm max.	Vppm max.	Vppm max.	Vppm max.	Vppm max.
99,9995	<0,15	<0,1	<0,1	<1	<0,1	<2	1,55

L'idrogeno prodotto viene successivamente inviato ai carri bombolai che vengono riempiti alla pressione di 200 bar g e destinati al mercato tramite trasporto su strada. Una quantità di circa 100-150 Nm³/h verrà inviata direttamente in tubazione alla pressione di 17 bar g alla Vetreria Sangalli.


Il Gas Naturale utilizzato nel processo proveniente dalla rete ad una pressione di circa 6 bar g ha la composizione molare di seguito riportata :

Elio	Metano	Etano	Butano	Pentano	Esani + idroc. superiori	Azoto	Anidride carbonica	Propano
0,01%	96,30%	1,77%	0,17%	0,03%	0,01%	0,87%	0,28%	0,55%

Le fasi principali del processo sono le seguenti:

- 1. Compressione di Gas Natutale da 6 a 22 bar g;
- 2. Steam reforming del Gas Naturale, comprendente le seguenti fasi principali:
 - Desolforazione del Gas Naturale
 - Reazione catalitica del Gas Naturale con vapore d'acqua (reforming)
 - Reazione catalitica del CO e del vapore prodotti nel reforming (shift conversion)
 - Purificazione dell'idrogeno dagli altri gas prodotti nelle reazioni mediante un processo di adsorbimento su setacci molecolari (PSA)
- 3. Invio, tramite gasdotto, direttamente al Cliente che lo utilizza alla pressione di 17 bar g.
- **4.** Compressione del gas Idrogeno a 200 bar g in carri bombolai e distribuzione su strada al Mercato del Triveneto.

COMPRESSIONE DEL GAS NATURALE

L' unità di compressione, con portata da circa 330 Nm³/h, è di tipo alternativo, oil free, bistadio. Il Gas Naturale in ingresso, unito ad una piccola portata (10 Nm³/h circa) di idrogeno puro uscente dalle 5 unità PSA alla pressione di 17 bar e alla temperatura di 20 °C e successivamente ridotto alla pressione di 6,5 bar, viene aspirato alla pressione di 6 barg e alla temperatura di 25 °C dalla rete ed inviato in mandata al compressore. La corrente di processo che si genera esce alla pressione di 22 bar.

DESOLFORAZIONE DEL GAS NATURALE

I composti solforati generalmente presenti nelle cariche idrocarburiche sono potenti veleni per i catalizzatori. L'eliminazione dei composti solforati prevede generalmente la loro conversione ad H_2S seguita dalla eliminazione di H_2S prodotto (gas acido).

Il processo di conversione dei composti solforati ad H_2S è denominato idrodesolforazione (catalitica): il fluido, proveniente dall'unità di compressione, viene preriscaldato da temperatura ambiente a circa 300 °C nello scambiatore di calore mediante scambio termico con il gas uscente dal Reformer (Syngas) e inviato all'unità di rimozione di zolfo.

Il processo consta di due reazioni: la prima, detta di hydrotreating, nella quale l'alimentazione, passando sul letto catalitico, dà origine ad acido solfidrico (H_2S) secondo la reazione che prevede l'idrogenazione di un idrocarburo R con un radicale -SH presente in molecola:

$$R-SH + H_2 \rightarrow RH_2 + H_2S \tag{1}$$

la seconda nella quale l'H₂S prodotto viene dapprima eliminato mediante lavaggio basico, seguito da adsorbimento su ZnO per eliminazione delle ultime tracce di H₂S:

$$ZnO + H_2S \rightarrow ZnS + H_2O$$
 (2)

REAZIONE CATALITICA DEL GAS NATURALE CON VAPOR D'ACQUA (REFORMING)

Il gas di processo, privato di zolfo, viene addizionato con vapore surriscaldato. La portata di vapore di processo è controllata in modo da mantenere costante il rapporto vapore/carbonio al valore desiderato e in modo che risulti sempre in eccesso rispetto al valore stechiometrico, per evitare il rischio di deposito di coke sui catalizzatori di reforming. L'impianto è autosufficiente per quanto concerne il consumo di vapore. Successivamente la miscela gas desolforato/vapore viene preriscaldata fino a 500 °C con il gas caldo proveniente dal ed infine inviato al Reformer stesso.

Il Reformer è un reattore costituito da 6 tubi contenenti il catalizzatore necessario alla reazione endotermica detta di Reforming:

$$CH_4 + H_2O + calore \leftarrow \rightarrow CO + 3H_2$$

la quale porta alla formazione di gas di sintesi (o syngas), miscela di CO e H₂.

Il calore necessario alla reazione viene fornito dal forno di Reforming, nella cui sezione radiante sono installati 6 tubi catalitici. Il bruciatore, posto nella sezione bassa del Reformer, viene alimentato con Gas Naturale, gas di coda uscente (Tailgas) e aria. In fase di avviamento, la fiamma è generata mediante scintilla nel bruciatore di accensione.

Accanto alla reazione precedentemente descritta, avviene una seconda reazione detta di Shift, quest'ultima moderatamente esotermica:

$$CO + H_2O \leftarrow \rightarrow CO_2 + H_2 + calore$$
 (3)

SHIFT CONVERSION

Il gas uscente dal Reformer viene raffreddato da 850 °C fino a 330 °C mediante scambio termico con acqua e successivamente inviato all'unità di conversione del CO.

Nell'unità di CO Shift, in presenza di un particolare catalizzatore, il CO reagendo con il vapore è convertito ad idrogeno e CO₂ secondo la reazione (3).

Si conclude quindi che i prodotti di reazione, derivanti dalla somma delle reazioni (2) e (3) sono, partendo da metano e vapore d'acqua, anidride carbonica e idrogeno nei seguenti rapporti molari:

$$CH_4 + 2H_2O \longleftrightarrow CO_2 + 4H_2$$
 (4)

PSA

Il syngas caldo uscente dal CO Shift alla temperatura di 405 °C viene preraffreddato nello scambiatore dal Gas Naturale proveniente dal compressore, raffreddato con aria in altro scambiatore, ulteriormente raffreddato con acqua nell'unità Syngas cooler e successivamente privato delle condense. Il gas di sintesi è quindi inviato all'unità di purificazione PSA costituita da 5 adsorbitori.

L'unità PSA lavora sul principio dell'adsorbimento mediante setacci molecolari: ad alta pressione, le impurità contenute nel gas di sintesi vengono adsorbite, mentre a bassa pressione avviene il processo di rigenerazione dei setacci molecolari.

Il ciclo di purificazione è costituito da 5 sottocicli, uno per ogni adsorbitore.

STEAM REFORMING DEL GAS NATURALE

L'idrogeno uscente dall'unità PSA viene inviato alla pressione di 17 bar g, in parte direttamente nel gasdotto per fornire il Cliente, in parte al compressore idrogeno per il riempimento di recipienti in pressione fino a 200 bar g.

REGOLAZIONE E CONTROLLO DELLE APPARECCHIATURE

Sia per l'impianto di frazionamento aria che per l'impianto di produzione idrogeno le apparecchiature sono controllate da un PLC (Programmable Logic Controller – sistema di memoria programmabile) collegato ad un pannello operatore locale e ad un PC supervisore collocato in sala controllo. Il PLC esegue un programma ed elabora i segnali digitali ed analogici provenienti da sensori e diretti agli attuatori presenti nell'impianto.

Il PLC controlla le apparecchiature rilevando ed elaborando tutte le grandezze fisiche lette dagli strumenti che caratterizzano il funzionamento dell'impianto e scambia informazioni con il supervisore. Il supervisore regola ogni apparecchiatura attraverso vari moduli di regolazione in anello chiuso PID (Controllo Proporzionale Derivativo). Il PID, grazie ad un input che determina il valore attuale, è in grado di reagire a un eventuale errore positivo o negativo tendendo verso il valore zero.

Il PID regola l'uscita in base a:

- il valore del segnale di errore (azione proporzionale);
- i valori passati del segnale di errore (azione integrale);
- quanto velocemente il segnale di errore varia (azione derivativa).

Il supervisore funge da interfaccia tra apparecchiatura e processo, nonché da interfaccia tra uomo e apparecchiatura. L'apparecchiatura può essere avviata da remoto, attraverso il supervisore che invia il segnale di avviamento al PLC locale, oppure localmente tramite apposito pulsante.

Analogamente è possibile avviare la procedura di fermata da remoto oppure localmente tramite pulsante di emergenza.

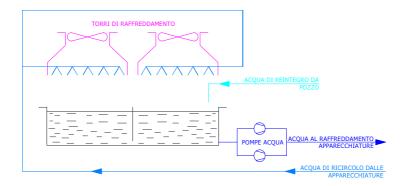
2.3. Bilancio di materia

2.3.1.IMPIANTO FRAZIONAMENTO ARIA AFP-3000

Materie prime lavorate:

ARIA

Pressione 1,013 bar Portata 142119 Nm³/h


Temperatura 28°C

Quantità annua 152000 t/anno

Le macchine e le apparecchiature inoltre necessitano di un certo apporto di acqua per il raffreddamento. L'acqua fredda necessaria per il raffreddamento delle macchine è prodotta utilizzando due torri evaporative:

- Torre di raffreddamento 1 "Aria", che asserve alle seguenti macchine:
 - turbocompressore aria TC1001
 - gruppo frigo FRU2001
 - compressore azoto C4001
 - compressore azoto C7300
 - compressore ossigeno C6100
- Torre di raffreddamento 2 "Azoto", che asserve alle seguenti macchine:
 - turbocompressore azoto TC8001
 - refrigerante HW9004/A turbina N2 calda
 - refrigerante HW9004/B turbina N2 fredda
 - refrigerante HW7005 booster turbine
 - depurazione argon
 - vaporizzatori ad acqua sulle linee di uscita dei serbatoi VT16000, VT17000, VT17001

Le due torri forniscono l'acqua di raffreddamento ai refrigeranti dei compressori installati ed ai refrigeranti di processo. L'acqua costituisce un ciclo chiuso mentre l'acqua di integrazione alle torri viene prelevata da due pozzi presenti all'interno dello stabilimento per compensare l'evaporato e le perdite per trascinamento. L'integrazione ammonta a circa 30 m³/h.

Le caratteristiche dell'acqua necessaria per l'impianto sono le seguenti:

inlet temperature:
 max temperature increasing:
 inlet pressure:
 pH
 21 °C
 10 °C
 3 bar
 7-9

- total hardness $< 200 \text{ mg/l of } CaCO_3$

suspended solids
 chlorides
 sulphate
 1000 mg/l
 150 mg/l
 150 mg/l

L'acqua deve'essere trattata in modo appropriato con sequestranti chimici al fine di evitare fenomeni di incrostazione e corrosione degli scambiatori.

I prodotti chimici utilizzati per il trattamento dell'acqua sono i seguenti:

- DISPERDENTE 2001: anticrostante per prevenire la precipitazione dei Sali di calcio e magnesio;
- ANTICORROSIVO 2051: anticorrosivo per rame e leghe (agente filmante per evitare l'innesco di corrosioni galvaniche nel caso di solubilizzazione di ioni Cu⁺⁺)
- IPOCLORITO: trattamento alghicida/battericida.

L'integrazione di acqua alle torri evaporative, al sistema antincendio e a tutti gli altri utilizzi previsti nell'impianto è garantita da due pompe sommerse, per una portata complessiva di circa $120 \text{ m}^3/\text{h}$. Le pompe sono installate in due pozzi (pozzo N° 1, pozzo N° 2) aventi profondità di circa 120 m.

Consumo di acqua stimato in m³/h:

Compressore aria	130
Gruppo frigorifero	20
Compressore argon	5
Aftercooler deoxo	2
Aftercooler booster	42
Turbine/Booster	20
Compressore feed	30
Compressore di riciclo	210
Compressore ossigeno	28
Compressore azoto	22
TOTALE	509

2.3.1.IMPIANTO DI STEAM REFORMING SR – 600

Materie prime lavorate:

GAS NATURALE: ACQUA DI PROCESSO:

Pressione massima 22 bar g Tipo Acqua demineralizzata

Portata 323 Nm³/h Portata 670 kg/h
Temperatura 20°C Pressione minima 2 bar g
Quantità annua 1925 t/anno Pressione di esercizio 6,0 bar g
Temperatura ambiente

Le produzioni sono rappresentate dalle seguenti correnti in uscita: idorgeno al 99,9995% e vapore d'acqua.

Durante il normale start-up e shut-down dell'impianto sono rischieste le seguenti utilities:

	AZOTO	IDROGENO (per desolforazione durante start up)
Quantità	200 Nm ³ /h	10 Nm ³ /h
Titolo	99,999 vol - %	99,9995 vol - %
Durata	circa 6÷15h	circa 15h
Pressione	7 bar g	13 bar g
Temperatura	ambiente	

2.4. Bilancio di Energia

2.4.1.IMPIANTO FRAZIONAMENTO ARIA AFP-3000

Consumi elettrici stimati in kW:

Compressore aria	1313	Compressore feed	488
Gruppo frigorifero	52	Compressore di riciclo	2278
Forno di rigenerazione	65	Pompe olio turbine	20
Soffiante di rigenerazione	8	Compressore ossigeno	372
Compressore argon	18	Compressore azoto	290
Forno essiccamento batteria argon	6	TOTALE	4910

2.4.2. IMPIANTO DI STEAM REFORMING SR-600

Motore elettrico compressore Gas Naturale	37 kW
Motore elettrico compressore Idrogeno	110 kW
Pompe di ricircolo acqua DEMI (P-311 A/B)	2 x 6 kW
Pompe di alimentazione acqua DEMI (P-301 A/B)	2 x 10 kW
TOTALE	179

2.5. Rifiuti prodotti

La tipologia di rifiuti prodotti all'interno dello Stabilimento relativa alle fasi produttive ordinarie riguarda:

- Scarti di olio minerale per motori, ingranaggi e lubrificazione, non clorurati
- Imballaggi, assorbenti; stracci, materiali filtranti e indumenti protettivi (non specificati altrimenti)

Gli "oli lubrificanti vari" vengono saltuariamente utilizzati per il normale ricambio dei prodotti di lubrificazione (impiegati per il corretto funzionamento dei macchinari installati presso lo stabilimento) necessario a causa dell'esaurimento della capacità lubrificante di questi ultimi. Gli "oli lubrificanti vari" non più utilizzabili vengono temporaneamente depositati per essere successivamente avviati allo

smaltimento nei modi previsti dalla normativa vigente in materia (vedasi dichiarazioni MUD codice CER 13 02 05). Lo stesso riguarda i materiali assorbenti necessari ad evitare sversamenti di oli nei piazzali e per la pulizia e manutenzione dei macchinari.

In merito alle fasi di manutenzioni straordinarie dell'impianto e delle apparecchiature vengono prodotte inoltre le seguenti tipologie di rifiuti:

- Imballaggi in materiali misti CER 150106
- Imballaggi in legno CER 150103
- Altri materiali isolanti contenenti o costituiti da sostanze pericolose CER 170603*
- Metalli misti CER 170407
- Componenti rimossi da apparecchiature fuori uso CER 160216

I rifiuti prodotti all'interno dello Stabilimento vengono raccolti separatamente in contenitori appositi secondo i codici CER identificati nel "Registro di Carico e Scarico Rifiuti".

Nella tabella sottostante si riporta descrizione e quantità di rifiuti prodotti e relative operazioni connesse a ciascuna tipologia di rifiuto prodotto, riferiti all'anno 2013.

C.E.R.	Descrizione rifiuto	Stato fisico	Destinazione	Quantità
150106	Imballaggi in materiali misti	Solido non pulverulento	R13	2340 kg
150103	Imballaggi in legno	Solido non pulverulento	R13	2460 kg
150106	Imballaggi in materiali misti	Solido non pulverulento	R13	1380 kg
150106	Imballaggi in materiali misti	Solido non pulverulento	R13	3660 kg
130205*	Scarti di olio minerale per motori, ingranaggi e lubrificazione, non clorurati	Liquido	R13	640 kg
170603*	Altri materiali isolanti contenenti o costituiti da sostanze pericolose	Solido non pulverulento	D15	380 kg
170407	Metalli misti	Solido non pulverulento	R13 - R4	7080 kg
160216	Componenti rimossi da apparecchiature fuori uso, diversi da quelli alla voce 160215	Solido non pulverulento	R13 - R4	2660 kg

2.6. Logistica di approvvigionamento

Le materie prime trattate nello Stabilimento sono l'aria ambiente, per l'impianto di frazionamento aria, metano (fornito dalla rete gas SNAM tramite gasdotto) e vapore acqueo (acqua proveniente da pozzo) per l'impianto di produzione idrogeno secondo la seguente tabella:

Linea produzione gas tecnici (ossigeno, azoto, argon)

	(****-8**) **8*)
Descrizione materie prime	Quantità a regime t/anno
Aria ambiente	152.000*

^{*} Peso aria pari a 1,2923 kg/m³, ore/anno esercizio 8.400, portata 14.000 Nmc/h

Linea produzione idrogeno

Descrizione materie prime	Quantità a regime t/anno
Gas naturale	2.713.200 Nm ³ /anno pari a circa 1.925 t/anno
Acqua di processo	5630

Dal momento che l'impianto di produzione idrogeno non è ancora operativo la fornitura di idrogeno in gasdotto avviene tramite carri bombolai. Tali mezzi provengono dallo stabilimento di Osio di Sopra (BG) con frequenza ogni 24h (variabili a seconda dei consumi del cliente).

La fornitura di gas allo stato liquido per le medie e grandi utenze viene effettuata attraverso apposite autocisterne. Il prodotto (Argon, Azoto, Ossigeno) viene trasferito in appositi serbatoi criogenici fissi dimensionati in relazione al consumo specifico del cliente.

Le autocisterne riforniscono principalmente aziende della zona industriale Aussa Corno di San Giorgio di Nogaro ma anche clienti del Triveneto ed esteri (Austria, Slovenia, Croazia). La frequenza di consegna varia in funzione dei consumi del cliente.

Per i clienti con consumi superiori a 100000 litri/mese è preferibile la fornitura di prodotto via gasdotto. La distribuzione del prodotto in gasdotto si realizza mediante un flusso continuo di gas su tubazione in acciaio al carbonio dalla centralina di partenza, situata presso l'impianto di produzione, alla centralina di arrivo, nel sito del cliente.

3. ENERGIA

3.1 PRODUZIONE DI ENERGIA

L'azienda non produce internamente energia elettrica o termica.

3.2. CONSUMO DI ENERGIA

Per il riscaldamento degli uffici e dei reparti nello stabilimento sono installate 2 caldaie a GPL, le cui caratteristiche sono riportate nella seguente tabella:

COLLOCAZIONE	POT. FOCOLARE	POT. UTILE	ANNO	MARCA
COLLOCAZIONE	kW	kW	ANIO	MARCA
Officina	26,7	24	1989	Vaillant
Palazzina uffici	26,7	24	1986	Vaillant

In previsione della futura messa in esercizio dell'impianto idrogeno è stata predisposta una tubazione di allacciamento delle caldaie a servizio di uffici e officina alla cabina di filtrazione e misura gas naturale in modo tale da permettere, in futuro, il riscaldamento di tali reparti a Gas Naturale anziché a GPL. A tale scopo, a fianco della cabina di filtrazione e misura Gas Naturale, è stata installata una cabina di riduzione della pressione del Gas Naturale dotata di relativo contatore di consumo.

Per quanto riguarda il forno di Reforming si hanno le seguenti caratteristiche:

CAMINO	SERVIZIO	Potenza termica	Combustibile	Tipologia
E6	Forno Reforming catalitico	1,8 MW	Gas naturale, Tailgas. Aria	Bruciatore per reattore industriale

Il Gas Naturale utilizzato nel processo di produzione idrogeno proviene dall'impianto di filtrazione e misura. L'impianto è costituito da:

- n° 2 linee di filtrazione del gas
- n° 1 linea di misura fiscale con relativo by-pass.

Tale impianto, della portata massima di 330 Nm³/h, riceve Gas Naturale dalla rete di trasporto di proprietà Snam Rete Gas alla pressione variabile da 6 a 12 bar g. Successivamente viene filtrato e misurato tramite un contatore a turbina (Elster Instromet type TRZ2-Q) con convertitore di volumi (modello ECOR 2 /N1-A1-411) ed inviato, in fase di avviamento, per il 90% (270 Nm³/h) all'unità di compressione per il processo mentre, i restanti 50 Nm³/h, vanno ad alimentare direttamente il bruciatore per la combustione. Successivamente, a regime, la quantità di Gas Naturale usata per la combustione si riduce fino a circa 30 Nm³/h (quantità stimata e verificabile solo in fase di funzionamento dell'impianto) in quanto si utilizza come combustibile nel bruciatore anche il gas di coda.

In base ai dati di progetto sono stimati i seguenti consumi di gas naturale per l'impianto idrogeno:

- Feed + Fuel: 270 + 53 Nm³/h per ottenere 585 Sm³/h di idrogeno
- Consumo specifico = 323/585 = 0,552 teorico
- Consumo specifico = 357/585 = 0,610 pratico

Per quanto riguarda i consumi specifici di energia elettrica per l'impianto idrogeno non si hanno ancora a disposizione dati. Relativamente all'impianto di frazionamento aria si riportano in tabella i consumi specifici di energia elettrica con riferimento all'anno 2013 espressi in kWh/Sm³:

OSSIGENO LIQUIDO	AZOTO LIQUIDO		OSSIGENO GAS	AZOTO GAS	AZOTO GAS	AZOTO GAS	
SPECIFICO	SPECIFICO	SPECIFICO	SPECIFICO	SPECIFICO BASSA PRESSIONE	SPECIFICO ALTA PRESSIONE	SPECIFICO DA RICICLO	SPECIFICO MEDIO GENERALE
1,06	0,88	5	0,54	0,37	0,52	0,45	0,78

4. EMISSIONI

4.1 EMISSIONI IN ATMOSFERA

La stabilimento SIAD di Carlino con protocollo 2012/87732 del 10/07/2012 secondo la trasmissione della determinazione dirigenziale n. 5020/2012 del 10/07/2012 pratica n° 2011/65-04-01-MS della Provincia di Udine ha ottenuto l'autorizzazione alle emissioni in atmosfera del punto di emissione E6 ai sensi degli articoli 269, 270 e 271 del D.Lgs. 152 del 3 aprile 2006 e s.m.i. constatando la non significatività delle emissioni derivanti dai punti di emissione E1, E2, E3, E4 ed E5 in quanto non vengono emessi inquinanti come definiti dall'art. 268 comma 1 del D.Lgs. 152/06 e s.m.i.

Si descrivono di seguito le attività particolari di impianti o macchinari che portano durante il processo lavorativo alla produzione di emissioni in atmosfera considerando un funzionamento di 350 giorni per un totale di 8400 ore/anno.

In calce è indicata la codifica dell'emissione prodotta ed associata alla fase operativa.

	Colonna inferiore distillazione aria	
Descrizione attività	Distillazione aria liquida su colonna a piatti con pressione di esercizio 4,5 bar	
Impianti e macchinari	Colonne di distillazione, compressori, valvole di sicurezza	
Prodotti in ingresso	Aria liquida	
Prodotti in uscita/intermedi	Gas tecnici grezzi liquefatti (Ossigeno, Azoto, Argon), gas incondensabili	
Identificativo emissione	E1	
Attività	Scarico incondensabili	
Natura inquinante emesso	Vapori non condensabili di aria (azoto, tracce argon e altri gas nobili)	
Stima durata emissione	Max 24 h/g; Max 7/7 gg; Max 350 gg/anno	
Stima q.tà inquinanti emessi	N.D.	
Abbattimento emissioni	Non presente	
Captazione e convogliamento	Scarico da valvola di sicurezza posta a fondo colonna	
N. camini	1	
Altezza emissione dal suolo	Circa 10 m	
Altezza edificio	Tubazione a bordo impianto	
Diametro int. bocca camino	170 mm	
Campionamento	Non previsto	
Accesso	Non previsto	

	Colonna superiore distillazione aria		
Descrizione attività	Distillazione aria liquida su colonna a piatti con pressione di esercizio 0,5 bar		
Impianti e macchinari	Colonne di distillazione, compressori, valvole di sicurezza per controllo regolazione pressione interna e purezza distillato		
Prodotti in ingresso	Miscela Gas tecnici grezzi liquefatti (Ossigeno, Azoto, Argon)		
Prodotti in uscita/intermedi	Gas tecnici grezzi liquefatti (Ossigeno, Azoto, Argon)		
Identificativo emissione	E2		
Attività	Regolazione marcia colonna distillazione		
Natura inquinante emesso	Azoto		
Stima durata emissione	Max 24 h/g; Max 7/7 gg; Max 350 gg/anno		
Stima q.tà inquinanti emessi	n.d.		
Abbattimento emissioni	Non presente		
Captazione e convogliamento	Scarico da valvola di regolazione pressione interna per marcia impianto		
N. camini	1		
Altezza emissione dal suolo	Circa 11 metri		
Altezza edificio	Tubazione a bordo impianto		
Diametro int. bocca camino	220 mm		
Campionamento	Non previsto		
Accesso	Non previsto		

Aspirazione — compressione aria					
Descrizione attività	Prelievo dell'aria atmosferica e compressione sino a 5,3 bar con trattamento di filtrazione, essicazione e decarbonatazione				
Impianti e macchinari	Compressore 4 stati				
Prodotti in ingresso	Aria				
Prodotti in uscita/intermedi	Aria compressa, incondensabili				
Identificativo emissione	E3				
Attività	Rigenerazione decarbonatatori/essiccatori aria				
Natura inquinante emesso	Azoto gassoso umido				
Stima durata emissione	Max 24 h/g; Max 7/7 gg; Max 350 gg/anno				
Stima q.tà inquinanti emessi	n. d.				
Abbattimento emissioni	Non presente				
Captazione e convogliamento	Scarico da valvola regolazione processo rigenerazione decarbonatatori				
N. camini	1				
Altezza emissione dal suolo	Circa 4 m				
Altezza edificio	Tubazione a bordo impianto				
Diametro int. bocca camino	270 mm				
Campionamento	Non previsto				
Accesso	Non previsto				

	Colonna superiore distillazione aria		
Descrizione attività	Distillazione aria liquida su colonna a piatti con pressione di esercizio 0,5 bar		
Impianti e macchinari	Colonne di distillazione, compressori, valvole di sicurezza per controllo regolazione pressione interna e purezza distillato		
Prodotti in ingresso	Miscela Gas tecnici grezzi liquefatti (Ossigeno, Azoto, Argon)		
Prodotti in uscita/intermedi	Gas tecnici grezzi liquefatti (Ossigeno, Azoto, Argon)		
Identificativo emissione	E4		
Attività	Produzione ossigeno		
Natura inquinante emesso	Ossigeno gassoso		
Stima durata emissione	Max 24 h/g; Max 7/7 gg; Max 350 gg/anno		
Stima q.tà inquinanti emessi	N. d.		
Abbattimento emissioni	Non presente		
Captazione e convogliamento	Scarico valvola regolazione colonna di distillazione per controllo purezza distillato		
N. camini	1		
Altezza emissione dal suolo	Circa 11,5 m		
Altezza edificio	Tubazione a bordo impianto		
Diametro int. bocca camino	355 mm		
Campionamento	Non previsto		
Accesso	Non previsto		

	Espansione azoto gas	
Descrizione attività	Il gas precedentemente compresso viene poi espanso in 2 turbine, con recupero di calore ed azionamento dei macchinari di cui al punto precedente	
Impianti e macchinari	Turbine di espansione, surcompressori, valvole di sfiato	
Prodotti in ingresso	Azoto gas	
Prodotti in uscita/intermedi	Azoto gas	
Identificativo emissione	E5	
Attività	Funzionamento turbocompressori/turbine per espansione/compressione azoto	
Natura inquinante emesso	Azoto, tracce di idrocarburi	
Stima durata emissione	Max 24 h/g; Max 7/7 gg; Max 350 gg/anno	
Stima q.tà inquinanti emessi	Carbonio Organico Tot. < 50 mg/Nm ³	
Procedimento di calcolo adottato	Dati storici	
Abbattimento emissioni	Non presente	
Captazione e convogliamento	Tubazione diretta dalla bocchetta di scarico del gruppo pompa	
N. camini	1	
Altezza emissione dal suolo	Circa 7 m	
Altezza edificio	Tubazione a bordo impianto	
Diametro int. bocca camino	170 mm	
Campionamento	Non previsto	
Accesso	Non previsto	

	Steam - Reforming	
Descrizione attività	Il gas, compresso e desolforato, viene inviato in reattore ed addittivato co vapore (prodotto per recupero di calore in uscita dallo steam reforming), pla reazione di trasformazione dell'idrocarburo con acqua in monossido carbonio ed idrogeno. Reattore di reforming catalitico con bruciato alimentato da una miscela di gas naturale, gas di coda proveniente dall'uni PSA ed aria	
Impianti e macchinari	Reattore di reforming catalitico con bruciatore alimentato da una miscela di gas naturale, gas di coda proveniente dall'unità PSA ed aria	
Prodotti in ingresso	Gas naturale e vapore	
Prodotti in uscita/intermedi	Miscela di monossido di carbonio ed idrogeno (syngas)	
Identificativo emissione	<i>E6</i>	
Attività	Bruciatore per riscaldamento reattore reforming	
Natura inquinante emesso	N ₂ (60%), H ₂ O(20%),CO ₂ (18%), O ₂ (1,5%), NO _x	
Stima durata emissione	Max 24 h/g; Max 7/7 gg; Max 345 gg/anno	
Stima q.tà inquinanti emessi	$NO_x < 350 \text{ mg/Nm}^3$	
Procedimento di calcolo adottato	Calcolo molare	
Abbattimento emissioni	Non presente	
Captazione e convogliamento	Camino da impianto di combustione	
N. camini	1	
Altezza emissione dal suolo	30 m	
Altezza edificio	/	
Diametro int. bocca camino	800 mm	
Campionamento	Il punto di campionamento sarà realizzato secondo norma UNI 10169	
Accesso	Secondo normativa	

Si riporta nella tabella che segue la stima degli inquinanti rilasciati con riferimento alla massima portata ottenibile dai macchinari installati:

Б	G II i	Portata	T	% O ₂	INQUINANT	ΓΙ			
Emissione n°	Coordinate Gauss Boaga	volumica	T [° C]	di	Tipo inquinante	Flusso di massa			
11	Gaass Boaga	(Nm^3/h) $\begin{bmatrix} 1 & C \end{bmatrix}$ no	/h) norm.	norm.	Concentrazione (mg/Nm ³)	kg/ora			
E1	N 5072544	n.d.	Amb		Gas Nobili	,			
LI	E 2381517	n.u.	Allio	-		/			
E2	N 5072544	n d	A mb		Azoto	,			
E2	E 2381517	n.d. Amb				/			
E2	N 5072528	1	A1-		Azoto	,			
E3	E 2381502	n.d. Amb				/			
E4	N 5072544	1	A1-		Ossigeno	,			
E4	E 2381517	n.d.	d. Amb			/			
17.5	N 5072552	1	A 1-		TOC	,			
E5	E 2381518	n.d.	Amb	Amb	II.u. Allio		< 50	/	
EC	N 5072635	2,000	1.450	2	NOx	,			
E 6	E 2381477	2.000	145°	145°	145	145°	3	< 350	/

Frequenza emissione nelle 24h: continua

Durata emissione 8400 h/anno

Ai sensi del disposto di cui al D.Lgs 152/06 non sono presenti nello stabilimento impianti o attività che possono generare emissioni diffuse.

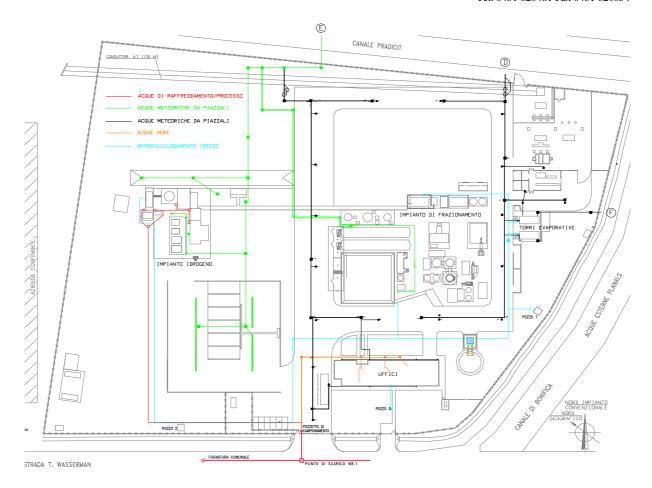
4.2 SCARICHI IDRICI

Facendo riferimento alla planimetria di seguito riportata le acque vengono scaricate secondo la seguente suddivisione:

Acque da servizi igienici

Le acque di scarico nere e bionde provenienti dai servizi igienici annessi agli uffici amministrativi vengono raccolte e convogliate, mediante apposita tubazione, allo scarico in fognatura.

Le acque di scarico da servizi igienici derivanti dagli uffici della ditta vengono convogliate al punto di scarico nr.1 senza subire alcun pretrattamento. Tali acque risultano autorizzate dal CAFC SpA.


Il quantitativo di acque reflue nere e bionde è stimato in circa m³/anno 140.

Acque di raffreddamento

Le acque di scarico derivanti da torri evaporative sono di seguito descritte.

- 1. Acque derivanti dallo spurgo continuo delle torri evaporative dell'impianto di frazionamento a Sud-Est dell'insediamento (portata oraria circa 25 m³), confluiscono allo scarico D mediante apposita tubazione. Si segnala che nel circuito di ricircolo delle torri di raffreddamento vengono additivate modeste quantità di prodotti chimici quali sterilizzanti, antincrostanti ed anticorrosivi. I prodotti vengono dosati con apparecchiature dosatrici in quantità minimali ed in un rapporto tale da garantire l'efficienza dello scambio termico nel rispetto delle caratteristiche qualitative dell'acqua. Le concentrazioni residuali dei prodotti nel circuito vengono controllate con apposita strumentazione. Tali acque sono scaricate come da Autorizzazione Provinciale.
- 2. Acque derivanti dallo spurgo continuo delle torri evaporative dell'impianto di produzione idrogeno posto a Nord dell'insediamento (portata oraria circa 4 m³), confluiscono in fognatura mediante apposita tubazione. Tali acque sono scaricate al punto di scarico nr.1 come autorizzazione da parte del CAFC SpA.

Le acque di scarico derivanti dai dalle torri evaporative a Sud-Est dell'insediamento sono trattate mediante additivazione di prodotti chimici, mentre quelle derivanti dalle torri evaporative a Nord dell'insediamento confluiscono in fognatura senza subire alcun trattamento.

Il quantitativo totale di acque reflue da raffreddamento impianti è stimato in circa 250560 m³/anno.

Acque da processi

Le acque di scarico derivanti da processi sono di seguito descritte.

- 1. Acque di risulta (concentrato) dall'osmotizzatore a servizio dell'impianto di produzione idrogeno posto a Nord dell'insediamento (portata oraria circa 1 m³).
- 2. Acque di spurgo continuo dalla caldaia a servizio dell'impianto di produzione idrogeno posto a Nord dell'insediamento (portata oraria circa 0,2 m³).

Le acque di scarico derivanti da processi confluiscono in fognatura senza subire alcun trattamento. Tali acque sono scaricate come da Autorizzazione del CAFC SpA.

Il quantitativo totale di acque reflue da processi è stimato in circa 10368 m³/anno.

Le tipologie di acque di scarico sopra descritte confluiscono in fognatura al punto di scarico nr. 1 tramite un'unica tubazione, previo passaggio in apposito pozzetto di campionamento (vedasi tavola grafica Tav. N. 1).

Acque meteoriche

Le acque meteoriche da piazzali, opportunamente raccolte, vengono trattate e convogliate allo scarico nel corso d'acqua (a Nord-Est dello stabilimento – scarichi E/D) mediante apposite linee separate ed autonome rispetto a quelle destinate alle altre tipologie di reflui.

Dette acque di scarico sono autorizzate con apposito documento rilasciato dalla Provincia di Udine.

4.3 EMISSIONI SONORE

Attualmente il Comune di Carlino non ha attuato la zonizzazione acustica prevista ai sensi dell'art.6 della legge n. 447/95. In riferimento all'art.8 del D,P.C.M. 14 novembre 1997 (norme transitorie), in attesa che il Comune proceda, secondo le indicazioni della Regione, alla zonizzazione con il relativo eventuale piano di risanamento acustico, si continuano ad applicare i limiti di cui al D.P.C.M. 1 marzo 1991. Tale decreto prevede una suddivisione del territorio comunale in zone come sotto riepilogate:

Zonizzazione	Limite diurno (h06:00÷22:00) Leq (A) in dB	Limite notturno (h22:00÷06:00) Leq (A) in dB
Tutto il territorio nazionale	70	60
Zona A (D.M. n. 1444/68)	65	55
Zona B (D.M. n. 1444/68)	60	50
Zone esclusivamente industriali	70	70

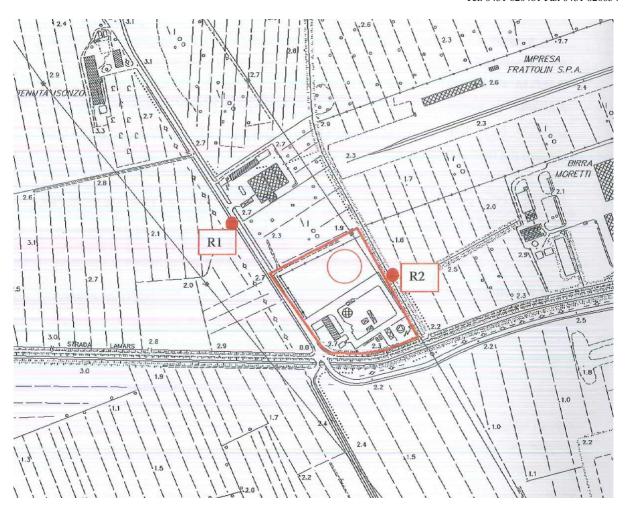
Nel caso in esame l'area descritta appartiene secondo la zonizzazione urbanistica del Comune a "zone per attività produttive: attività produttive, industriali ed artigianali di interesse regionale", ove sono situati gli insediamenti produttivi, ovvero alla "Zona esclusivamente industriale" di cui art. 2 del Decreto Ministeriale 2 aprile 1968 n. 1444.

Come si può osservare dalle simulazioni effettuate i livelli calcolati ai recettori sono al di sotto dei limiti indicati per le zone citate, in quanto si hanno valori inferiori a 70 dB (A).

Per quanto concerne invece i valori limite differenziali di immissione previsti dal D.P.C.M. 14.11.1997, pari a 5 dB per il periodo diurno e 3 dB per il periodo notturno risulta quanto segue:

- Essendo la zona in esame all'interno di un comprensorio artigianale-industriale è possibile che venga ritenuta appartenere, in relazione alla futura zonizzazione acustica comunale, alla classe VI "Aree esclusivamente industriali" di cui al D.P.C.M. 14.11.1997. Comunque attualmente si ritiene che appartenga ad una "Zona esclusivamente industriale" di cui al D.P.C.M. 01.03.2008. In tali zone i limiti differenziali non si applicano.

La ditta nell'anno 2011 ha prodotto una valutazione previsionale di impatto acustico valore di valutazione d'impatto acustico dello stabilimento ai sensi della Delibera Regionale n. 2870/2009 intitolata "RELAZIONE DI STIMA DI IMPATTO ACUSTICO DI UN IMPIANTO PER LA PRODUZIONE DI IDROGENO DA GAS NATURALE" (Data emissione: 7 marzo 2011, N° doc.: 007/REL/11/1.012/11/MG, revisione: 0) firmata dal Dott. Geol. M. Giaconi, in qualità di tecnico competente in materia di acustica ai sensi della L. 447/95 (Iscr. Albo Regionale tecnici competenti in materia di acustica ambientale con Decr. Regionale F.V.G. N. AMB/963).


Trattandosi di una valutazione previsionale, come richiesto dalla Delibera, le fasi del lavoro sono state scorporate in due parti. La prima consistente nella valutazione del rumore esistente nell'area prossima allo stabilimento SIAD e presso i ricettori con l'impianto idrogeno in questione non realizzato, avente lo scopo di rilevare il clima acustico dell'area *ante operam*. Ciò è avvenuto mediante la realizzazione di una campagna di misure fonometriche su due posizioni distinte. La seconda consistente nella stima previsionale del rumore derivante dall'impianto idrogeno una volta realizzato, avente lo scopo di verificare, appunto, l'impatto acustico dell'impianto in questione, tenuto conto del clima acustico dell'area e rilevato nella campagna di indagini fonometriche di cui sopra.

Lo studio analizza l'impatto acustico derivante dal funzionamento dell'impianto di produzione dell'idrogeno. Per elaborare la simulazione sono stati considerati, quali valori di input del rumore immesso nell'ambiente quelli relativi ad un impianto di produzione idrogeno già esistente, di pari caratteristiche, acquisiti dalla SIAD spa presso un altro stabilimento del gruppo nell'anno 2001.

Rispetto alla classificazione urbanistica adottata dal P.R.G.C. del comune di Carlino lo stabilimento ricade nella Zona omogenea D1 - "zone per attività produttive: attività produttive, industriali ed artigianali di interesse regionale".

Si riporta in figura la planimetria d'inquadramento territoriale del sito (scala 1:5000) e i due punti di misura del rumore R1 e R2 eseguiti nell'area *ante operam*. Nel circoletto rosso è indicata la posizione schematica ove sorgerà il nuovo impianto.

Nell'impianto in esame le sorgenti di rumore principali sono riconducibili al funzionamento del reparto idrogeno. Per il presente scopo è stato considerato l'insieme delle apparecchiature, con rispettive misure fonometriche, che costituiscono un impianto di idrogeno già esistente in un altro stabilimento del gruppo, fornite dalla SIAD. Per i calcoli previsionali si è ritenuto opportuno, cautelativamente, utilizzare la misura di rumore che ha dato i valori più alti: in particolare si tratta della misura relativa al forno dell'impianto. Si è considerata tale misura come sorgente puntuale posta pressappoco al centro del nuovo impianto.

Di seguito vengono forniti, in forma tabellare, i dati relativi al posizionamento della sorgente e alle caratteristiche di esercizio della stessa.

Sorgente n.1	Forno reparto idrogeno 1
Coordinate GBE	2424916 - 5052992
Quota sls	2 m
Caratteristiche di esercizio	Funzionamento continuo sulle 24 h
Posizionamento (interno/esterno)	Esterno

I dati sono stati elaborati tenendo conto delle barriere costituite dai vicini edifici industriali, mentre, per le sorgenti interne allo stabilimento, delle pareti dell'edificio adibito ad uffici.

Il terreno viene considerato riflettente e la mappa acustica orizzontale è calcolata a 2 e 5 metri dal suolo. Nel calcolo sono state tenute in conto le condizioni di temperatura (13°C) ed umidità (70%) medie

Inoltre, al fine di ottemperare ad una più completa valutazione dell'impatto acustico prodotto dall'impianto in esame nei confronti dei ricettori prossimi all'area interessata si provveduto a procedere ad una serie di misure fonometriche. Tali misure sono state effettuate nei punti ritenuti più significativi al fine della determinazione del clima acustico della zona.

Lo misure sono state effettuate in conformità al D.M. del 16.03.1998 "Tecniche di rilevamento e di misurazione dell'inquinamento acustico" e al D.P.C.M. 14 novembre 1997 "Determinazione dei valori limite delle sorgenti sonore".

I due punti di misura R1 ed R2 sono stati collocati all'esterno dell'area di cantiere. Le misure sono avvenute in assenza dell'impianto pertanto hanno avuto lo scopo di acquisire il rumore residuo dell'area considerato come "fondo ambientale".

Da una prima osservazione soggettiva dell'ambiente, è stato possibile rilevare per il punto di misura R1 assenza di rumori soggettivamente percettibili o disturbanti, mentre per quanto riguarda il punto R2 durante l'acquisizione della misura si avvertiva un rumore di "fondo" legato all'attività industriale degli insediamenti presenti nelle vicinanze al punto di misura.

La rilevazione é stata effettuata il giorno 25 febbraio 2011 dalle ore 17:30 circa fino alle ore 18:20 circa. Le misurazioni sono state eseguite in assenza di precipitazioni atmosferiche (D.M. 16/03/98); inoltre la velocità del vento, misurata con anemometro portatile, non ha influito sulle misure con possibilità di alterazione dei dati.

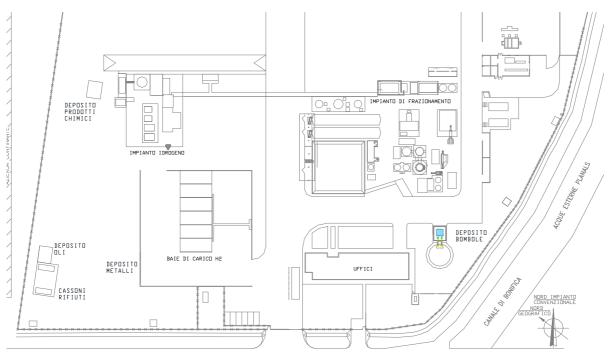
La velocità del vento, controllata con anemometro portatile, non è stata infatti superiore a 5 m/s (DM 16/03/98, All.B.7). La direzione del vento, controllata con metodo empirico, non è stata misurata in quanto il vento è stato assente per tutta la durata dell'indagine.

Nella tabella sotto vengono presentati i risultati delle misure effettuate in 25/02/2011, i dati sono arrotondati a 0,5 dB.

Punto di misura	Numero rilievo	dB(A)	Valore arrotondato a 0,5 dB	TIPOLOGIA DI MISURA	CONDIZIONI e NOTE
R1	1	60.5	60.5 Rumore residuo Leq (A		-
R2	2	53.8	54.0	Rumore residuo Leq (A)	-

Dall'analisi dei risultati delle misure effettuate risulta che il rumore si colloca all'esterno della proprietà tra 54,0 e 60,5 db(A).

I valori rilevati all'esterno dello stabilimento pertanto lasciano presupporre valori di rumore residuo ben più elevati rispetto ai valori di immissione prodotti dall'impianto, inferiori, come anzidetto, a 55 dB(A) all'esterno dello stabilimento e pertanto si ritiene che l'impianto possa rispettare i limiti differenziali previsti dal D.P.C.M. 14.11.1997.


Alla data odierna l'impianto idrogeno è stato installato ma non è ancora entrato in funzione. Quindi, fino ad allora, si può affermare che l'impatto acustico dello stabilimento deriva esclusivamente dalla restante parte degli impianti presenti. Questi ultimi inoltre non hanno subito cambiamenti rispetto l'anno 2011 e, per quanto concerne la valutazione del rumore lungo il perimetro esterno relativo a questi, il rapporto d'indagine acustica datato 18-05-2003 (analisi n° 03BR652 da tecnico competente in acustica dr.ssa Scuderi Elena) conclude che "l'impianto SIAD opera sia nel rispetto dei limiti assoluti di immissione ma anche al di sotto dei valori di qualità [70dB(A)] relativamente ad una zona ad uso esclusivamente industriale".

4.4 RIFIUTI

All'interno dello stabilimento è presente un'area dedicata al deposito temporaneo dei rifiuti speciali pericolosi (oli esausti, oli emulsionati, grasso, fusti cuscini assorbenti e seppiolite assobente), localizzata nell'area retrostante il muro di perimetrazione delle baie di carico dei carri bombolai, ad accesso limitato. L'area di deposito oli adibita a deposito/stoccaggio dei bidoni di olio lubrificante, dei materiali isolanti e del serbatoio di gasolio per autotrazione (muletto) è costituita da una struttura in cemento dotata di una griglia metallica sulla quale appoggiano i bidoni stessi. Tale griglia, unitamente ad un cordolo perimetrale di contenimento, permette la raccolta nel vano sottostante (di idonea volumetria) degli sversamenti che dovessero eventualmente verificarsi per motivi accidentali. Le dimensioni dell'area di deposito sono di 5,0 m x 6,0 m con un'altezza della vasca di sversamento di 30 cm. La struttura è inoltre dotata di apposita copertura metallica che protegge i bidoni dagli agenti atmosferici impedendone il dilavamento da parte delle precipitazioni meteoriche.

I rottami di ferro e i materiali misti vengono conferiti in appositi container a cielo aperto contrassegnati da apposita etichetta indicante la tipologia di rifiuto presente di dimensioni H 1,3 x 6 x 2,5 metri. I due container sono posizionati su basamento di calcestruzzo di dimensioni 12,2 x 8 metri nell'area retrostante il muro di perimetrazione delle baie di carico dei carri bombolai ad accesso limitato. Si riporta la planimetria di stabilimento indicante le zone di deposito all'interno dello Stabilimento:

ANA T WASSERMAN

I contenitori per i rifiuti stanziano in zona identificata e segnalata all'interno del perimetro dello Stabilimento. Prima del loro riempimento completo, il personale interno contatta telefonicamente la ditta preposta al loro trattamento (smaltimento o recupero presso azienda terza) la quale organizza il loro prelievo dallo Stabilimento sotto propria responsabilità.

Nel caso si producessero nuovi rifiuti o vi fosse il dubbio sulla loro natura (difficile identificazione del codice CER, rifiuti derivanti da lavorazioni particolari od occasionali, ...) viene contattata l'azienda preposta al ritiro per una visione del rifiuto, un eventuale campionamento ed una successiva analisi dello stesso. Sentito il parere di tale ditta si procede con il prelievo del rifiuto ed il suo seguente trattamento.

All'interno dello Stabilimento viene conservato il "Registro di Carico e Scarico Rifiuti" e tutti i movimenti (corredati da relative copie dei formulari identificativi di trasporto, conservati per 5 anni presso lo Stabilimento) vengono annotati al suo interno secondo normativa.

La stessa ditta preposta al prelievo dei rifiuti annualmente compila la dichiarazione annuale dei rifiuti (MUD).

I rifiuti urbani vengono smaltiti come assimilabili agli urbani mediante stessa azienda.

Per i toner esausti è stato predisposto apposito contenitore per la raccolta che, una volta riempito, viene ritirato e sostituito dalla ditta fornitrice. Per quanto riguarda rifiuti quali carta e plastica essi vengono

gestiti a livello comunale: due contenitori, uno per la raccolta differenziata della carta ed uno per quella della plastica, asservono allo Stabilimento. Quando riempiti, la ditta CSR passa per la loro raccolta, come da contratto.

I rifiuti prodotti dallo sfalcio dell'erba, potatura siepi/arbusti e pulizia piazzali viene smaltito dalla ditta che si occupa della manutenzione del verde e spazzamento piazzali.

5. SISTEMI DI ABBATTIMENTO/CONTENIMENTO

EMISSIONI IN ATMOSFERA:

Per quanto riguarda le emissioni relative ai punti E1-E2-E3-E4 ed E5, esse non sono significative in quanto non vengono emessi inquinanti così come definiti dall'art. 268, comma 1 del D.Lgs. 152/2006. Per quanto riguarda il punto di emissione E6, a servizio del forno per il reforming catalitico, l'impianto è già di per sé in grado di garantire un emissione stimata al di sotto dei limiti di legge per gli ossidi di azoto (NOx).

Per tutti questi punti di emissione non è pertanto prevista l'installazione di sistemi di abbattimento.

EMISSIONI IN ACQUA:

Le acque meteoriche che precipitano sui piazzali scoperti centrali (SCARICO D) e le acque meteoriche che precipitano sui piazzali scoperti settentrionali (SCARICO E), prima dello scarico nel corpo idrico superficiale, vengono sottoposte ad un trattamento di sedimentazione, dissabbiatura e disoleatura a coalescenza.

Le acque di svuotamento delle torri di raffreddamento (SCARICO F) vengono invece scaricate nel corpo idrico superficiale senza nessun trattamento preventivo, così come non sono sottoposte a trattamento le acque derivanti dallo spurgo delle torri evaporative dell'impianto di produzione idrogeno che confluiscono in fognatura (scarico n.1).

EMISSIONI SONORE:

Con riferimento al paragrafo 4.3 Emissioni sonore, non risultano emissioni tali da determinare la necessità di impianti di abbattimento.

Inoltre, con riferimento alla comunicazione 44859 prot. N. APL.11- SCR/V del 16/07/2010 emessa dalla Regione Friuli Venezia Giulia si afferma che l'impianto non è ricompreso in alcuna categoria di cui agli allegati III e IV alla parte II del D.Lgs. 152/06 e s.m.i. e, di conseguenza, la procedura di Valutazione d'Impatto Ambientale e la Verifica di Assoggettabilità a Valutazione d'Impatto Ambientale non sono dovute.

RIFIUTI:

Richiamando quanto descritto al paragrafo 4.4, il contenimento dei rifiuti viene attuato nelle seguenti modalità:

Tipo di rifiuto	Modalità di contenimento	
Oli e lubrificanti	Deposito coperto con vasca di contenimento in calcestruzzo (5m x 6m x h30cm)	
Materiali misti	Container metallico scarrabile (H 1,3 x 6 x 2,5 m)	
Materiali ferrosi	Container metallico scarrabile (H 1,3 x 6 x 2,5 m)	

6. BONIFICHE AMBIENTALI

Il sito comprendente lo stabilimento della Società SIAD SpA attualmente non è inserito (D.M. 24/02/2003 – GU 27/95/2003) all'interno delle aree definite dalla "Perimetrazione del Sito di Interesse Nazionale della Laguna di Grado e Marano".

7. STABILIMENTI A RISCHIO DI INCIDENTE RILEVANTE

Lo stabilimento rientra nel campo di applicazione dell'art. 6 del D.Lgs. 334/99 e s.m.i. relativo ai Rischi di incidente rilevante, a motivo del superamento delle soglie dei quantitativi in deposito di ossigeno liquido. Alla data attuale non ci sono state visite ispettive a cura degli Enti preposti.

8. VALUTAZIONE INTEGRATA DELL'INQUINAMENTO

VALUTAZIONE COMPLESSIVA DELL'INQUINAMENTO AMBIENTALE E TECNICHE DI PREVENZIONE

• EMISSIONI IN ATMOSFERA

Si riporta nella tabella che segue la stima degli inquinanti rilasciati con riferimento alla massima portata ottenibile dai macchinari installati:

		Portata	T [° C]	0/ 0	INQUINANTI		
Emissione	Coordinate	volumica (Nm³/h)		% O ₂ di	Tipo inquinante	Flusso di	
n°	Gauss Boaga			norm.	Concentrazione	massa	
		(14111/11)		1101111.	(mg/Nm^3)	kg/ora	
E1	N 5072544	n.d.	Amb		Gas Nobili	,	
EI	E 2381517	n.u.	Amb	-		/	
E2	N 5072544	n.d.	Amb		Azoto	,	
E2	E 2381517	n.u.	Allio			,	
Е3	N 5072528	n.d.	Amb		Azoto		
E.S	E 2381502	II.u.	Allio			/	
E4	N 5072544	n.d.	Amb		Ossigeno	,	
£4	E 2381517	II.u.	Allio			/	
E5	N 5072552	n.d.	Amb		TOC	,	
E5	E 2381518	11.Q.	Aillo		< 50	/	
E6	N 5072635	2.000	145°	3	NOx	,	
EO	E 2381477	2.000	143	3	< 350	/	

Frequenza emissione nelle 24h: continua Durata emissione 8400 h/anno

Tali emissioni rientrano al di sotto dei limiti di legge e risultano autorizzate ai sensi degli articoli 269, 270 e 271 del D.Lgs. 152 del 3 aprile 2006 e s.m.i.

In funzione della messa in esercizio dell'impianto idrogeno l' Azienda effettuerà, con periodicità annuale dalla data di messa a regime dell'impianto idrogeno, le misurazioni di autocontrollo del punto di emissione E6.

I punti di campionamento saranno realizzati mediante tronchetti di diametro 125 mm o di area superficiale pari a 100 x 250 mm, dotati di flangia in acciaio, riferita alla norma tecnica UNI EN 1092-1:2007.

• SCARICHI IDRICI

Si riassumono in tabella gli scarichi idrici presenti all'interno dello Stabilimento:

Tipologia	Attività	Portata		Punto di scarico	Autorizzazione
Acque da servizi igienici	Palazzina uffici	140 m ²	³/anno	nr.1	CAFC SpA
Acque di raffreddamento	Impianto di frazionamento aria	25 m ³ /h	250560	D	Provincia di Udine
da torri evaporative	Impianto di produzione idrogeno	4 m ³ /h	m³/anno	nr.1	CAFC SpA
Acque da processi	da osmotizzatore imp.Idrogeno	1 m ³ /h	10368	nr.1	CAFC SpA
Acque da processi	spurgo continuo dalla caldaia imp. Idorgeno	$0,2 \text{ m}^3/\text{h}$	m ³ /anno	nr.1	CAFC SpA
Acque meteoriche	Piazzali stabilimento	n.d.		E+D	Provincia di Udine

Il punto di scarico nr.1 è dotato di pozzetto di ispezione e campionamento. E' inoltre installato un contatore prima dell'immissione delle acque reflue nella rete fognaria.

Le acque convogliate al punto di scarico D vengono sottoposte ad una prima sedimentazione in una vasca di dimensioni di \emptyset 2,43 x h1,41 m, dotata di comparto deviatore che consente di inviare a trattamento la sola aliquota di prima pioggia, intesa come una precipitazione di 5 mm uniformemente distribuita sull'intera superficie scolante servita. Successivamente i reflui vengono sottoposti ad un processo di dissabbiatura e disoleatura a coalescenza in una vasca avente dimensioni pari a \emptyset 2,43 x h2,16 m. Infine le acque convogliano allo scarico in corpo idrico (scarico D), previo passaggio attraverso un pozzetto di campionamento.

Le acque meteoriche che precipitano sui piazzali scoperti settentrionali (scarico E) convogliano ad una vasca, avente dimensioni di \emptyset 2,43 x h1,41 m, in cui vengono sottoposte ad una prima sedimentazione. La vasca è dotata di comparto deviatore che consente di inviare a trattamento la sola aliquota di prima pioggia, intesa come una precipitazione di 5 mm uniformemente distribuita sull'intera superficie scolante servita. E' inserito un ulteriore comparto di dissabbiatura costituito da una vasca delle dimensioni di \emptyset 2,43 x h2,10 m e volume utile di 7 m³. Successivamente i reflui vengono sottoposti ad un processo di dissabbiatura e disoleatura a coalescenza in una vasca avente dimensioni pari a \emptyset 2,43 x h2,16 m. Infine le acque convogliano allo scarico in corpo idrico (scarico E), previo passaggio attraverso un pozzetto di campionamento.

Si segnala infine che le acque di svuotamento delle torri di raffreddamento (operazione di manutenzione straordinaria), vengono avviate allo scarico in corpo idrico (scarico F) per mezzo di apposita canaletta, senza nessun trattamento preventivo, previo passaggio attraverso un pozzetto di campionamento.

• EMISSIONI SONORE

I risultati delle misure fonometriche realizzate nel 2011, in merito alla valutazione previsionale di impatto acustico si ha che il rumore presente nelle aree esterne, sia a confine dello stabilimento SIAD sia presso i recettori, risulta essere abbondantemente al di sotto dei limiti di legge previsti come valori di immissione di cui al D.P.C.M. 1 marzo 1991. Dall'analisi dei risultati delle misure effettuate infatti risulta che il rumore si colloca all'esterno della proprietà tra 54,0 e 60,5 db(A).

Con riferimento alla comunicazione 44859 prot. N. APL.11- SCR/V del 16/07/2010 emessa dalla regione Friuli Venezia Giulia si afferma che l'impianto non è ricompreso in alcuna categoria di cui

agli allegati III e IV alla parte II del D.Lgs. 152/06 e s.m.i. e, di conseguenza, la procedura di Valutazione d'Impatto Ambientale e la Verifica di Assoggettabilità a Valutazione d'Impatto Ambientale **non sono dovute.**

RIFIUTI

Lo Stabilimento opera nel controllo e corretto stoccaggio e smaltimento dei rifiuti. I rifiuti di materiali misti derivanti dalle normali attività dello Stabilimento e i materiali ferrosi derivanti dalle manutenzioni di macchinari e apparecchiature vengono raccolti separatamente in container metallici contrassegnati e successivamente avviati allo smaltimento nei modi previsti dalla normativa vigente in materia.

Gli "oli lubrificanti vari" vengono saltuariamente utilizzati per il normale ricambio dei prodotti di lubrificazione impiegati per il corretto funzionamento dei macchinari installati presso lo Stabilimento. Gli "oli lubrificanti vari" e i relativi prodotti assorbenti (cuscini e seppiolite) non più utilizzabili vengono temporaneamente depositati in un'area coperta costituita da una struttura in cemento dotata di una griglia metallica sulla quale appoggiano i bidoni stessi. Tale griglia, unitamente ad un cordolo perimetrale di contenimento (h 30cm), permette la raccolta nel vano sottostante degli sversamenti che dovessero eventualmente verificarsi per motivi accidentali.

VALUTAZIONE COMPLESSIVA DEI CONSUMI ENERGETICI

IMPIANTO FRAZIONAMENTO ARIA AFP-3000

Consumi elettrici stimati in kW:

Compressore aria	1313	Compressore feed	488
Gruppo frigorifero	52	Compressore di riciclo	2278
Forno di rigenerazione	65	Pompe olio turbine	20
Soffiante di rigenerazione	8	Compressore ossigeno	372
Compressore argon	18	Compressore azoto	290
Forno essiccamento batteria argon	6	TOTALE	4910

IMPIANTO DI STEAM REFORMING SR-600

Motore elettrico compressore Gas Naturale	37 kW
Motore elettrico compressore Idrogeno	110 kW
Pompe di ricircolo acqua DEMI (P-311 A/B)	2 x 6 kW
Pompe di alimentazione acqua DEMI (P-301 A/B)	2 x 10 kW
TOTALE	179

Per quanto riguarda i consumi specifici di energia elettrica per l'impianto idrogeno non si hanno ancora a disposizione dati. Relativamente all'impianto di frazionamento aria si riportano in tabella i consumi specifici di energia elettrica con riferimento all'anno 2013 espressi in kWh/Sm³:

OSSIGENO LIQUIDO		ARGON LIQUIDO	OSSIGENO GAS	AZOTO GAS	AZOTO GAS	AZOTO GAS	
SPECIFICO	SPECIFICO	SPECIFICO	SPECIFICO	SPECIFICO BASSA PRESSIONE	SPECIFICO ALTA PRESSIONE	SPECIFICO DA RICICLO	SPECIFICO MEDIO GENERALE
1,06	0,88	5	0,54	0,37	0,52	0,45	0,78

CERTIFICAZIONI AMBIENTALI RICONOSCIUTE (ISO 14001-EMAS)

Lo Stabilimento è in fase di elaborazione del Sistema di Gestione Ambientale ai fini del conseguimento della certificazione ambientale ISO 14001.

APPLICAZIONE DELLE MTD

La tabella seguente riassume lo stato di applicazione delle migliori tecniche disponibili per la prevenzione integrata dell'inquinamento, individuate per gli impianti chimici per la fabbricazione di prodotti chimici inorganici.

	STATO DI	
MTD	APPLICAZIONE	NOTE
IMPLEMENTAZIONE DI UN SISTEMA DI GESTIONE AMBIENTALE		
Elevato livello di educazione e formazione di personale	Applicato	ACR 40
Personale con solida educazione di base in ingegneria chimica e operazioni chimiche	Applicato	
Periodica valutazione e registrazione delle performance del personale	Applicato	ACR 40
Periodica formazione del personale su situazioni di emergenza, salute e sicurezza al lavoro e sulla sicurezza dei prodotti e del loro trasporto	Applicato	ACR 40
Elevati standard per la sicurezza, aspetti ambientali e qualitativi nella produzione di sostanze inorganiche	Applicato	
Sistemi di audit interni per esaminare l'implementazione delle politiche ambientali e verificare la conformità con le procedure, gli standard e i riferimenti normativi	Applicato	ACR 74 M0027
Revisione delle implicazioni ambientali di tutte le materie prime, gli intermedi e i prodotti	Applicato	
Identificazione e caratterizzazione di tutti i rilasci programmati e potenzialmente non programmati	Applicato	
Isolamento dei flussi di emissioni/reflui/rifiuti alla sorgente al fine di facilitare il loro riuso e il loro trattamento	Applicato	
Trattamento dei flussi di emissioni/reflui/rifiuti alla sorgente per massimizzare l'efficienza di abbattimento intervenendo su correnti con alta concentrazione e basso flusso	Applicato	
Capacità di tamponamento del flusso e del carico	Applicato	
Installazione di sistemi di abbattimento di riserva (se necessario)	Non applicabile	Non necessari sistemi di abbattimento di riserva
Formulazione di una strategia ambientale dell'alta direzione dello stabilimento nonché l'impegno a seguire tale strategia	Applicato	Politica Aziendale
Chiara struttura organizzativa che assicuri che la responsabilità sui temi ambientali sia totalmente integrata nelle decisioni di tutti i dipendenti	Applicato	ACR 103
Procedure scritte o prassi relative a tubi gli aspetti rilevanti a livello ambientali nelle fasi di progettazione,funzionamento, manutenzione, commissioning e decommissioning degli impianti	Applicabile	Gli impianti sono progettati da SMI, società legata a SIAD ma indipendente nel proprio lavoro
Sistemi di audit interni per esaminare l'implementazione delle politiche ambientali e verificare la conformità con le procedure, gli standard e i rifenmenti normativi	Applicato	ACR 74
Pratiche di rendicondazione che valutino i costi totali delle materie prime (inclusa l'energia), nonché lo smaltimento e il trattamento dei rifiuti	Applicato	
Pianificazione finanziaria e tecnica a lungo termine degli investimenti in campo ambientale	Applicato	

Considerazione del concetto di " Ecologia Industriale", visto come Impatto di un processo sull'ambiente circostante e le opportunità per una migliore efficienza e performance ambientale	Applicato	
Implementare e aderire ad un sistema di gestione ambientale volontario come EMAS o EN 130 14001	Applicabile	In fase di elaborazione il Sistema di Gestione Ambientale dello Stabilimento
Uso di sistemi di controllo (hardware e software) sia per il processo che per la strumentazione di controllo dell'inquinamento al fine di assicurare che le operazioni siano stabili, le rese elevate e le performance ambientali buone in tutte le condizioni operative	Applicato	ACR 686, 691, 703, 704,972, 1086, 1146
Implementazioni di sistemi che assicurino la consapevolezza ambientale e la formazione dell' operatore	Applicabile	ACR 1107
Esistenza di definite procedure di risposta ad eventi anomali	Applicato	ACR 811; PEI
Disponibilità di check di controllo sui processi in continuo: monitoraggio dei parametri ambientali critici al fine di rilevare condizioni operative anomale, emissioni e presenza di sistemi/misure che assicurino un pronto intervento	Applicato	
Svolgimento di ispezioni e manutenzioni ordinarie e, quando necessarie, straordinarie al fine di ottimizzare le performance degli impianti e della strumentazione di processo	Applicato	ACR 74, 1086
Considerare e valutare le necessità di trattamento delle emissioni in aria a seguito di operazioni di depressurizzazione, svuotamento, spurgo e pulizia di apparecchiature o provenienti dai sistemi di abbattimento delle acque reflue	Non applicabile	Emissione degli inquinanti al di sotto dei limiti di legge
Implementazione di un sistema di gestione dei rifiuti che includa la minimizzazione dei rifiuti, la riduzione delle emissioni e il consumo di materie prime	Applicabile	Gestione rifiuti secondo quanto previsto dalla Normativa vigente (SISTRI in particolare)
INTERVEN	TI	
Minimizzare l'inquinamento di suolo e acque sotterranee progettando, costruendo, operando e mantenendo i servizi, in cui le sostanze che rappresentano un potenziate rischio di contaminazione vengono movimentate, in modo tale che le sversamonto di materiale sia minimizzato; questo include i seguenti interventi	Applicato	
avere impianti sigillati, stabili e sufficientemente resistenti contro possibili stress chimici, termici o meccanici (particolarmente importante per sostanze altamente tossiche)	Applicato	
prevedere volumi dì ritenzione sufficienti per contenere in sicurezza sversamenti e fughe di sostanze da destinare al trattamento o deposito	Applicato	Vasche di contenimento sotto i serbatoi delle sostanze per il trattamento acque e sotto il deposito olii e gasolio
prevedere volumi sufficienti per il contenimento dell'acqua per l'impianto antincendio	Applicato	cfr progetto sistema antincendio
effettuare operazioni di carico e scarico in aree adeguatamente protette	Applicato	Il carico e lo scarico dei prodotti chimici avviene senza dispersione degli stessi.

stoccare i materiali in aree adegualamente attrezzate e protette per possibili perdite	Applicato	Vasche di contenimento sotto i serbatoi delle sostanze per il trattamento acque e sotto il deposito olii e gasolio
dotare tutti i pozzetti a camere di trattamento/convogliamento con elevali livelli di allarme del livello di liquido o ispezionarli regolarmente	Non applicabile	Non vi sono camere di tattamento
definire programmi per testare e ispezionare serbatoi e condotti incluse flange e valvole	Applicato	I test vengono eseguiti conformemente a quanto richiesto dalla noramtiva specifica
sistemi di controllo sui canali di scarico/sfioratori	Applicato	Verifiche analitiche periodiche
verificare l'integrità dei serbatoi	Applicato	Verifiche secondo normativa
adottare i serbatoi con sistemi anti- intasamento	Non applicabile	Riempimento per gravità da cisterna mobile
stoccare materiali e prodotti in aree coperte al riparo dalla pioggia	Applicato	
RIDUZIONE DELLE EMISSIONE	ONI IN ATMOSFERA	A
Minimizzare le emissioni di polveri e raggiungere livelli di emissione interiori a 10mg/Nm3 usando una o pier delle seguenti tecnologie: - cicloni - filtri a tessuto - scrubber a umido - precipitatori elettrostatici.	Non applicabile	Emissione degli inquinanti al di sotto dei limiti di legge
Si considera MTD per il controllo dell'inquinamento atmosferico da VOC un'appropriata combinazione o selezione delle seguenti tecniche: membrane selettive di separazione • condensazione • adsorbimento • scrubber; • incenerimento termico • ossidazione catalitica • torcia.	Non applicabile	Emissione degli inquinanti al di sotto dei limiti di legge
GESTIONE E TRATTAMENTO D	EGLI SCARICHI ID	RICI
Pretrattamento all'interno dello stabilimento e trattamento finale in un impianto di depurazione interno allo stabilimento	Non applicabile	Scarico di acque di raffreddamento e meteoriche
Pretrattamento e trattamento in un impianto di depurazione interno allo stabilimento	Non applicabile	Scarico di acque di raffreddamento e meteoriche